• Home
  • About Us
  • Study Materials
    • CBSE
      • Nursery
      • KG
      • Class 1
      • Class 2
      • Class 3
      • Class 4
      • Class 5
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • ICSE
      • Nursery
      • KG
      • Class 1
      • Class 2
      • Class 3
      • Class 4
      • Class 5
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • GSEB
      • Class 4
      • Class 5
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • CBSE Sample Papers
      • Previous Year Question Paper
      • CBSE Topper Answer Sheet
      • CBSE Sample Papers for Class 12
      • CBSE Sample Papers for Class 11
      • CBSE Sample Papers for Class 10
      • CBSE Sample Papers for Class 9
      • CBSE Sample Papers for Class 8
      • CBSE Sample Papers Class 7
      • CBSE Sample Papers for Class 6
    • RD Sharma
      • RD Sharma Class 12 solution
      • RD Sharma Class 11 Solutions
      • RD Sharma Class 10 Solutions
      • RD Sharma Class 9 Solutions
      • RD Sharma Class 8 Solutions
      • RD Sharma Class 7 Solutions
      • RD Sharma Class 6 Solutions
  • Maths
  • Learning Methods
    • Smart Class
    • Live Class
    • Home Tuition
  • Partner Program
    • Become a Teacher
    • Become a Franchise
  • Blog
  • Contact
    Bhavy EducationBhavy Education
    • Home
    • About Us
    • Study Materials
      • CBSE
        • Nursery
        • KG
        • Class 1
        • Class 2
        • Class 3
        • Class 4
        • Class 5
        • Class 6
        • Class 7
        • Class 8
        • Class 9
        • Class 10
        • Class 11
        • Class 12
      • ICSE
        • Nursery
        • KG
        • Class 1
        • Class 2
        • Class 3
        • Class 4
        • Class 5
        • Class 6
        • Class 7
        • Class 8
        • Class 9
        • Class 10
        • Class 11
        • Class 12
      • GSEB
        • Class 4
        • Class 5
        • Class 6
        • Class 7
        • Class 8
        • Class 9
        • Class 10
        • Class 11
        • Class 12
      • CBSE Sample Papers
        • Previous Year Question Paper
        • CBSE Topper Answer Sheet
        • CBSE Sample Papers for Class 12
        • CBSE Sample Papers for Class 11
        • CBSE Sample Papers for Class 10
        • CBSE Sample Papers for Class 9
        • CBSE Sample Papers for Class 8
        • CBSE Sample Papers Class 7
        • CBSE Sample Papers for Class 6
      • RD Sharma
        • RD Sharma Class 12 solution
        • RD Sharma Class 11 Solutions
        • RD Sharma Class 10 Solutions
        • RD Sharma Class 9 Solutions
        • RD Sharma Class 8 Solutions
        • RD Sharma Class 7 Solutions
        • RD Sharma Class 6 Solutions
    • Maths
    • Learning Methods
      • Smart Class
      • Live Class
      • Home Tuition
    • Partner Program
      • Become a Teacher
      • Become a Franchise
    • Blog
    • Contact

      Constructions Class 10 Notes Maths Chapter 11

      • Home
      • Constructions Class 10 Notes Maths Chapter 11

      Constructions Class 10 Notes Maths Chapter 11

      CBSE Class 10 Maths Notes Chapter 11 Constructions Pdf free download is part of Class 10 Maths Notes for Quick Revision. Here we have given NCERT Class 10 Maths Notes Chapter 11 Constructions. According to new CBSE Exam Pattern, MCQ Questions for Class 10 Maths Carries 20 Marks.

      CBSE Class 10 Maths Notes Chapter 11 Constructions

      Determining a Point Dividing a given Line Segment, Internally in the given Ratio M : N

      Let AB be the given line segment of length x cm. We are required to determine a point P by dividing it internally in the ratio m : n.

      Steps of Construction:

      • Draw a line segment AB = x cm.
      • Make an acute ∠BAX at the end A of AB.
      • Use a compass of any radius and mark off arcs. Take (m + n) points A1, A2, … Am, Am+1, …, Am+n along AX such that AA1 = A1A2 = … = Am+n-1 , Am+n
      • Join Am+nB.
      • Passing through Am, draw a line AmP || Am+nB to intersect AB at P. The point P so obtained is the A required point which divides AB internally in the ratio m : n.
        Constructions Class 10 Notes Maths Chapter 11 1

      Construction of a Tangent at a Point on a Circle to the Circle when its Centre is Known

      Steps of Construction:

      • Draw a circle with centre O of the given radius.
        Constructions Class 10 Notes Maths Chapter 11 2
      • Take a given point P on the circle.
      • Join OP.
        Constructions Class 10 Notes Maths Chapter 11 3
      • Construct ∠OPT = 90°.
        Constructions Class 10 Notes Maths Chapter 11 4
      • Produce TP to T’ to get TPT’ as the required tangent.
        Constructions Class 10 Notes Maths Chapter 11 5

      Construction of a Tangent at a Point on a Circle to the Circle when its Centre is not Known

      If the centre of the circle is not known, then we first find the centre of the circle by drawing two non-parallel chords of the circle. The point of intersection of perpendicular bisectors of these chords gives the centre of the circle. Then we can proceed as above.

      Construction of a Tangents from an External Point to a Circle when its Centre is Known

      Steps of Construction:

      • Draw a circle with centre O.
      • Join the centre O to the given external point P.
      • Draw a right bisector of OP to intersect OP at Q.
      • Taking Q as the centre and OQ = PQ as radius, draw a circle to intersect the given circle at T and T’.
      • Join PT and PT’ to get the required tangents as PT and PT’.
        Constructions Class 10 Notes Maths Chapter 11 6

      Construction of a Tangents from an External Point to a Circle when its Centre is not Known

      If the centre of the circle is not known, then we first find the centre of the circle by drawing two non-parallel chords of a circle. The point of intersection of perpendicular bisectors of the chords gives the centre of the circle. Then we can proceed as above.

      Construction of a Triangle Similar to a given Triangle as per given Scale Factor mn , m < n.

      Let ΔABC be the given triangle. To construct a ΔA’B’C’ such that each of its sides is mn (m < n) of the corresponding sides of ΔABC.

      Steps of Construction:

      • Construct a triangle ABC by using the given data.
      • Make an acute angle ∠BAX, below the base AB.
      • Along AX, mark n points A1, A2 …, An, such that AA1 = A1A2 = … = Am-1 Am = … An-1 An.
      • Join AnB.
      • From Am, draw AmB’ parallel to AnB, meeting AB at B’.
      • From B’, draw B’C’ parallel to BC, meeting AC at C’.
        Triangle AB’C’ is the required triangle, each of whose sides is mn (m < n) of the corresponding sides of ΔABC.
        Constructions Class 10 Notes Maths Chapter 11 7

      Construction of a Triangle Similar to a given Triangle as per given Scale Factor mn , m > n.

      Let ΔABC be the given triangle and we want to construct a ΔAB’C’, such that each of its sides is mn (m > n) of the corresponding side of ΔABC.

      Steps of Construction:

      • Construct a ΔABC by using the given data.
      • Make an acute angle ∠BAX, below the base AB. Extend AB to AY and AC to AZ.
      • Along AX, mark m points A1, A2 …, An, ..Am, such that AA1 = A1A2 = A2A3 = … = An-1 An = … = Am-1 Am
      • Join AnB.
      • From Am, draw AmB’ parallel to AnB, meeting AY produced at B’.
      • From B’, draw B’C’ parallel to BC, meeting AZ produced at C’.
      • Triangle AB’C’ is the required triangle, each of whose sides is (mn) (m > n) of the corresponding sides of ΔABC.
        Constructions Class 10 Notes Maths Chapter 11 8

      Search

      NCERT SOLUTIONS

      • NCERT Solutions For Class 1
      • NCERT Solutions For Class 2
      • NCERT Solutions For Class 3
      • NCERT Solutions For Class 4
      • NCERT Solutions For Class 5
      • NCERT Solutions For Class 6
      • NCERT Solutions For Class 7
      • NCERT Solutions For Class 8
      • NCERT Solutions For Class 9
      • NCERT Solutions For Class 10
      • NCERT Solutions For Class 11
      • NCERT Solutions For Class 12

      GSEB SOLUTOINS

      • GSEB Solutions For Class 4
      • GSEB Solutions For Class 5
      • GSEB Solutions For Class 6
      • GSEB Solutions For Class 7
      • GSEB Solutions For Class 8
      • GSEB Solutions For Class 9
      • GSEB Solutions For Class 10
      • GSEB Solutions For Class 11
      • GSEB Solutions For Class 12

      SITE NAVIGATION

      • Best Online Live Coaching Classes
      • Blog
      • About Us
      • Contact
      • Book A Free Class
      • Pay Now !

      GSEB SOLUTIONS

      • GSEB Solutions For Class 4
      • GSEB Solutions For Class 5
      • GSEB Solutions For Class 6
      • GSEB Solutions For Class 7
      • GSEB Solutions For Class 8
      • GSEB Solutions For Class 9
      • GSEB Solutions For Class 10
      • GSEB Solutions For Class 11
      • GSEB Solutions For Class 12

      NCERT SOLUTIONS

      • NCERT Solutions For Class 1
      • NCERT Solutions For Class 2
      • NCERT Solutions For Class 3
      • NCERT Solutions For Class 4
      • NCERT Solutions For Class 5
      • NCERT Solutions For Class 6
      • NCERT Solutions For Class 7
      • NCERT Solutions For Class 8
      • NCERT Solutions For Class 9
      • NCERT Solutions For Class 10
      • NCERT Solutions For Class 11
      • NCERT Solutions For Class 12

      (+91) 99984 33334

      bhavyeducation@gmail.com

      Our Social Profiles

      © 2022 Bhavy Education.