Gujarat Board Textbook Solutions Class 11 Maths Chapter 7 Integrals Ex 7.11
Gujarat Board Textbook Solutions Class 11 Maths Chapter 7 Integrals Ex 7.11
Gujarat Board Textbook Solutions Class 11 Maths Chapter 7 Integrals Ex 7.11
By using properties of definite integrals, evaluate the following:
Question 1.
(int_{0}^{frac{pi}{2}}) cos2x
Solution:
Question 2.
(frac{sqrt{sin x}}{sqrt{sin x}+sqrt{cos x}})dx
Solution:
Question 3.
(int_{0}^{frac{pi}{2}} frac{sin ^{frac{3}{2}} x}{sin ^{frac{3}{2}} x+cos ^{frac{3}{2}} x})dx
Solution:
Question 4.
(int_{0}^{frac{pi}{2}} frac{cos ^{5} x}{sin ^{5} x+cos ^{5} x})
Solution:
Question 5.
(int_{-5}^{5})|x + 2|dx
Solution:
Question 6.
(int_{2}^{8})|x – 5|dx
Solution:
Question 7.
(int_{0}^{1})x(1 – x)ndx
Solution:
Question 8.
(int_{0}^{frac{pi}{2}})log(1 + tan x)dx
Solution:
Question 9.
(int_{0}^{2})x(sqrt{2-x})dx
Solution:
Question 10.
(int_{0}^{frac{pi}{2}})(2log sin x – log sin2x)dx
Solution:
Question 11.
(int_{-frac{pi}{2}}^{frac{pi}{2}} sin ^{2} x d x)
Solution:
Let f(x) = sin2x. Then,
f(- x) = [sin(- x)]2 = (- sin x)2 = sin2x = f(x).
∴ f(x) is an even function.
Question 12.
(int_{0}^{π}) (frac{xdx}{1+sinx})
Solution:
Adding (1) and (2), we have:
Question 13.
(int_{-frac{pi}{2}}^{frac{pi}{2}} sin ^{7} x d x)
Solution:
Let f(x) = sin7x
f(- x) = [sin (- x)]7 = (- sin x)7 = – sin7x = – f(x)
⇒ f(x) is an odd function of x.
But (int_{-a}^{a})f(x) dx = 0 when x is odd.
∴ (int_{frac{pi}{2}}^{frac{pi}{2}} sin ^{7} x) dx = 0.
Question 14.
(int_{0}^{2π}) cos5x
Solution:
f(x) = cos5x
∴ f(2π – x) = cos5(2π – x) = cos5x = f(x).
∴ I = (int_{0}^{2π}) cos5x dx = 2(int_{0}^{π})cos5x dx.
Again taking g(x) = cos5x, we get
g(π – x) = cos5(π – x) = – cos5x = – g(x)
∴ I = 0. (Because g is an odd function.)
Hence, (int_{0}^{2π})cos5x dx = 0.
Question 15.
(int_{0}^{frac{pi}{2}}) (frac{sinx-cosx}{1+sinxcosx})dx
Solution:
Adding (1) and (2), we get
Question 16.
(int_{0}^{π})log(1 + cosx)dx
Solution:
Adding (4) and (5), we get
Put 2x = t so that 2 dx = dt.
Question 17.
(int_{0}^{a} frac{sqrt{x}}{sqrt{x}+sqrt{a-x}})dx
Solution:
Question 18.
(int_{0}^{1})|x – 1|dx
Solution:
Question 19.
Prove that (int_{0}^{a}) f(x)g(x) dx = 2(int_{0}^{a}) f(x)dx,
if f and g are defined as f(x) = f(a – x) and g(x) + g(x – a) = 4.
Solution:
Hence, the result.
Choose the correct answers in questions 20 and 21:
Question 20.
The value of (int_{-frac{pi}{2}}^{frac{pi}{2}})(x3 + x cosx + tan5x + 1) dx is
(A) 0
(B) 2
(C) π
(D) 1
Solution:
∴ Part(C) is the correct answer.
Question 21.
The value of (int_{0}^{frac{pi}{2}}) log ((frac{4+3sinx}{4+3cosx})) dx is
(A) 2
(B) (frac{3}{4})
(C) 0
(D) – 2
Solution:
∴ I = 0.
∴ Part(C) is the correct answer.