Gujarat Board Textbook Solutions Class 11 Maths Chapter 7 Integrals Ex 7.3
Gujarat Board Textbook Solutions Class 11 Maths Chapter 7 Integrals Ex 7.3
Gujarat Board Textbook Solutions Class 11 Maths Chapter 7 Integrals Ex 7.3
Find the integrals of the following:
Question 1.
sin2(2x + 5)
Solution:
Question 2.
sin3x cos4x
Solution:
Question 3.
cos2x cos4x cos6x
Solution:
Question 4.
sin3(2x + 1)
Solution:
Question 5.
sin3x cos3x
Solution:
Question 6.
sinx sin2x sin3x
Solution:
Question 7.
sin4x sin8x
Solution:
Question 8.
(frac{1-cosx}{1+cosx})
Solution:
Question 9.
(frac{cosx}{1+cosx})
Solution:
Question 10.
sin4x
Solution:
Question 11.
cos42x
Solution:
Question 12.
(frac{sin ^{2} x}{1+cos x})
Solution:
= x – sinx + C.
Question 13.
(frac{cos2x-cos2α}{cosx-cosα})
Solution:
Question 14.
(frac{cosx-sinx}{1+sin2x})
Solution:
Question 15.
tan32x sec2x
Solution:
Question 16.
tan4x
Solution:
Question 17.
(frac{sin ^{3} x+cos ^{3} x}{sin ^{2} x cos ^{2} x})
Solution:
Question 18.
(frac{cos 2 x+2 sin ^{2} x}{cos ^{2} x})
Solution:
Question 19.
(frac{1}{sin x cos ^{3} x})
Solution:
Question 20.
(frac{cos 2 x}{(cos x+sin x)^{2}})
Solution:
Question 21.
sin-1x
Solution:
Question 22.
(frac{1}{cos(x-a)cos(x-b)})
Solution:
Choose the correct answers in the following questions 23 and 24:
Question 23.
∫ (frac{sin ^{2} x-cos ^{2} x}{sin ^{2} x cos ^{2} x})
(A) tan x + cot x + C
(B) tan x + cosec x + C
(C) – tan x + cot x + C
(D) tan x + sec x + C
Solution:
∴ part (A) is the correct answer.
Question 24.
∫ (frac{e^{x}(1+x)}{cos ^{2}left(x e^{x}right)}) is equal to.
(A) – cot (e.xx)
(B) tan (x.ex) + C
(C) tan (ex) + C
(D) cot (ex) + C
Solution:
I = ∫ (frac{e^{x}(1+x)}{cos ^{2}left(x e^{x}right)}) dx.
Put x ex = t, so that (ex + x ex) dx = dt.
or ex(1 + x)dx = dt
∴ I = ∫ (frac{d t}{cos ^{2} t}) = ∫sec2 t dt = tan t + C.
= tan(x ex) + C.
∴ Part (B) is the correct answer.