• Home
  • About Us
  • Study Materials
    • CBSE
      • Nursery
      • KG
      • Class 1
      • Class 2
      • Class 3
      • Class 4
      • Class 5
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • ICSE
      • Nursery
      • KG
      • Class 1
      • Class 2
      • Class 3
      • Class 4
      • Class 5
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • GSEB
      • Class 4
      • Class 5
      • Class 6
      • Class 7
      • Class 8
      • Class 9
      • Class 10
      • Class 11
      • Class 12
    • CBSE Sample Papers
      • Previous Year Question Paper
      • CBSE Topper Answer Sheet
      • CBSE Sample Papers for Class 12
      • CBSE Sample Papers for Class 11
      • CBSE Sample Papers for Class 10
      • CBSE Sample Papers for Class 9
      • CBSE Sample Papers for Class 8
      • CBSE Sample Papers Class 7
      • CBSE Sample Papers for Class 6
    • RD Sharma
      • RD Sharma Class 12 solution
      • RD Sharma Class 11 Solutions
      • RD Sharma Class 10 Solutions
      • RD Sharma Class 9 Solutions
      • RD Sharma Class 8 Solutions
      • RD Sharma Class 7 Solutions
      • RD Sharma Class 6 Solutions
  • Maths
  • Learning Methods
    • Smart Class
    • Live Class
    • Home Tuition
  • Partner Program
    • Become a Teacher
    • Become a Franchise
  • Blog
  • Contact
    Bhavy EducationBhavy Education
    • Home
    • About Us
    • Study Materials
      • CBSE
        • Nursery
        • KG
        • Class 1
        • Class 2
        • Class 3
        • Class 4
        • Class 5
        • Class 6
        • Class 7
        • Class 8
        • Class 9
        • Class 10
        • Class 11
        • Class 12
      • ICSE
        • Nursery
        • KG
        • Class 1
        • Class 2
        • Class 3
        • Class 4
        • Class 5
        • Class 6
        • Class 7
        • Class 8
        • Class 9
        • Class 10
        • Class 11
        • Class 12
      • GSEB
        • Class 4
        • Class 5
        • Class 6
        • Class 7
        • Class 8
        • Class 9
        • Class 10
        • Class 11
        • Class 12
      • CBSE Sample Papers
        • Previous Year Question Paper
        • CBSE Topper Answer Sheet
        • CBSE Sample Papers for Class 12
        • CBSE Sample Papers for Class 11
        • CBSE Sample Papers for Class 10
        • CBSE Sample Papers for Class 9
        • CBSE Sample Papers for Class 8
        • CBSE Sample Papers Class 7
        • CBSE Sample Papers for Class 6
      • RD Sharma
        • RD Sharma Class 12 solution
        • RD Sharma Class 11 Solutions
        • RD Sharma Class 10 Solutions
        • RD Sharma Class 9 Solutions
        • RD Sharma Class 8 Solutions
        • RD Sharma Class 7 Solutions
        • RD Sharma Class 6 Solutions
    • Maths
    • Learning Methods
      • Smart Class
      • Live Class
      • Home Tuition
    • Partner Program
      • Become a Teacher
      • Become a Franchise
    • Blog
    • Contact

      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry

      • Home
      • Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry

      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry

      Introduction to Trigonometry Class 10 Important Questions Very Short Answer (1 Mark)

      Question 1.
      If tan θ + cot θ = 5, find the value of tan2θ + cotθ. (2012)
      Solution:
      tan θ + cot θ = 5 … [Given
      tan2θ + cot2θ + 2 tan θ cot θ = 25 … [Squaring both sides
      tan2θ + cot2θ + 2 = 25
      ∴ tan2θ + cot2θ = 23

      Question 2.
      If sec 2A = cosec (A – 27°) where 2A is an acute angle, find the measure of ∠A. (2012, 2017D)
      Solution:
      sec 2A = cosec (A – 27°)
      cosec(90° – 2A) = cosec(A – 27°) …[∵ sec θ = cosec (90° – θ)
      90° – 2A = A – 27°
      90° + 27° = 2A + A
      ⇒ 3A = 117°
      ∴ ∠A = 117∘3 = 39°

      Question 3.
      If tan α = 3–√ and tan β = 13√,0 < α, β < 90°, find the value of cot (α + β). (2012)
      Solution:
      tan α = 3–√ = tan 60° …(i)
      tan β = 13√ = tan 30° …(ii)
      Solving (i) & (ii), α = 60° and β = 30°
      ∴ cot (α + β) = cot (60° + 30°) = cot 90° = 0

      Question 4.
      If sin θ – cos θ = 0, find the value of sin4 θ + cos4 θ. (2012, 2017D)
      Solution:
      sin θ – cos θ = 0 = sin θ = cos θ
      ⇒ sinθcosθ = 1 ⇒ tan θ = 1 ⇒ θ = 45°
      Now, sin4θ + cos4θ
      = sin4 45° + cos4 45°
      = (12√)4+(12√)4=14+14=24=12

      Question 5.
      If sec θ + tan θ = 7, then evaluate sec θ – tan θ. (2017OD)
      Solution:
      We know that,
      sec2θ – tan2θ = 1
      (sec θ + tan θ) (sec θ – tan θ) = 1
      (7) (sec θ – tan θ) = 1 …[sec θ + tan θ = 7; (Given)
      ∴ sec θ – tan θ = 17

      Question 6.
      Evaluate: 10. 1−cot245∘1+sin290∘. (2014)
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 1

      Question 7.
      If cosec θ = 54, find the value of cot θ. (2014)
      Solution:
      We know that, cot2θ = cosec2θ – 1
      = (54)2 – 1 ⇒ 2516 – 1 ⇒ 25−1616
      coť2θ = 916 i cot θ = 34

      Question 8.
      If θ = 45°, then what is the value of 2 sec2θ + 3 cosec2θ ? (2014)
      Solution:
      2 sec2θ + 3 cosec2θ = 2 sec2 45° + 3 cosec2 45°
      = 2(2–√)2 + 3 (2–√)2 = 4 + 6 = 10

      Question 9.
      If 3–√ sin θ = cos θ, find the value of 3cos2θ+2cosθ3cosθ+2. (2015)
      Solution:
      3–√ sin θ = cos θ … [Given
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 2

      Question 10.
      Evaluate: sin2 19° + sin771°. (2015)
      Solution:
      sin2 19° + sin2 71°
      = sin219° + sin2 (90° – 19°)…[∵ sin(90° – θ) = cos θ
      = sin2 19° + cos2 19° = 1 …[∵ sin2 θ + cos2 θ = 1

      Question 11.
      What happens to value of cos when increases from 0° to 90°? (2015)
      Solution:
      cos 0° = 1, cos 90° = 0
      When θ increases from 0° to 90°, the value of cos θ decreases from 1 to 0.

      Question 12.
      If tan θ = ax, find the value of xa2+x2√. (2013)
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 3

      Question 13.
      If in a right angled ∆ABC, tan B = 125, then find sin B. (2014)
      Solution:
      1st method:
      tan B = 125 ∴ cot B = 512
      cosec2 B = 1 + cot2 B
      = 1 + [(512)2/latex]=1+[latex]
      = 144+25144=169144
      cosec B = 1312 ∴ sin B = 1213
      2nd method:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 4
      tan B = 125
      tan B = ACBC
      Let AC = 12k, BC = 5k
      In rt. ∆ACB,
      AB2 = AC2 + BC2 …[Pythagoras theorem
      AB2 = (12k)2 + (5k)2
      AB2 = 144k2 + 25k22 = 169k2
      AB = 13k
      ∴ sin B = ACAB=12k13k=1213

      Question 14.
      If ∆ABC is right angled at B, what is the value of sin (A + C). (2015)
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 5
      ∠B = 90° …[Given
      ∠A + ∠B + ∠C = 180° …[Angle sum property of a ∆
      ∠A + ∠C + 90° = 180°
      ∠A + ∠C = 90°
      ∴ sin (A + C) = sin 90° = 1 …(taking sin both side

      Introduction to Trigonometry Class 10 Important Questions Short Answer-I (2 Marks)

      Question 15.
      Evaluate: tan 15° . tan 25° , tan 60° . tan 65° . tan 75° – tan 30°. (2013)
      Solution:
      tan 15°. tan 25°, tan 60°. tan 65°. tan 75° – tan 30°
      = tan(90° – 75°) tan(90° – 65°). 3–√ . tan 65°. tan 75° – 13√
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 6

      Question 16.
      Express cot 75° + cosec 75° in terms of trigonometric ratios of angles between 0° and 30°. (2013)
      Solution:
      cot 75° + cosec 75°
      = cot(90° – 15°) + cosec(90° – 15°)
      = tan 15° + sec 15° …[cot(90°-A) = tan A
      cosec(90° – A) = sec A

      Question 17.
      If cos (A + B) = 0 and sin (A – B) = 3, then find the value of A and B where A and B are acute angles. (2012)
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 7
      Putting the value of B in (i), we get
      ⇒ A = 30° + 30° = 60°
      ∴ A = 60°, B = 30°

      Question 18.
      If A, B and C are the interior angles of a ∆ABC, show that sin (A+B2) = cos(c2). (2012)
      Solution:
      In ∆ABC, ∠A + ∠B + ∠C = 180° …(Angle sum property of ∆
      ∠A + ∠B = 180° – ∠C
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 8

      Question 19.
      If x = p sec θ + q tan θ and y = p tan θ + q sec θ, then prove that x2 – y2 = p2 – q2. (2014)
      Solution:
      L.H.S. = x2 – y2
      = (p sec θ + q tan θ)2 – (p tan θ + q sec θ)2
      = p2 sec θ + q2 tan2 θ + 2 pq sec 2 tan 2 -(p2 tan2 θ + q2 sec2 θ + 2pq sec θ tan θ)
      = p2 sec θ + 2 tan2 θ + 2pq sec θ tan θ – p2 tan2 θ – q2 sec θ – 2pq sec θ tan θ
      = p2(sec2 θ – tan2 θ) – q2(sec?2 θ – tan2 θ) =
      = p2 – q2 …[sec2 θ – tan2 θ = 1
      = R.H.S.

      Question 20.
      Prove the following identity: (2015)
      sin3θ+cos3θsinθ+cosθ = 1 – sin θ . cos θ
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 9

      Question 21.
      Simplify: 1+tan2A1+cot2A. (2014)
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 10
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 11

      Question 22.
      If x = a cos θ – b sin θ and y = a sin θ + b cos θ, then prove that a2 + b2 = x2 + y2. (2015)
      Solution:
      R.H.S. = x2 + y2
      = (a cos θ – b sin θ)2 + (a sin θ + b cos θ)2
      = a2cos2 θ + b2 sin2 θ – 2ab cos θ sin θ + a2 sin2 θ + b2 cos2 θ + 2ab sin θ cos θ
      = a2(cos2 θ + sin2θ) + b2 (sin2 θ + cos2 θ)
      = a2 + b2 = L.H.S. …[∵ cos2 θ + sin2 θ = 1

      Introduction to Trigonometry Class 10 Important Questions Short Answer – II (3 Marks)

      Question 23.
      Given 2 cos 3θ = 3–√, find the value of θ. (2014)
      Solution:
      2 cos 3θ = 3–√ …[Given
      cos 3θ = 3√2 ⇒ cos 3θ = cos 30°
      30 = 30° ∴ θ = 10°

      Question 24.
      If cos x = cos 40° . sin 50° + sin 40°. cos 50°, then find the value of x. (2014)
      Solution:
      cos x = cos 40° sin 50° + sin 40° cos 50°
      cos x = cos 40° sin(90° – 40°) + sin 40°.cos(90° – 40°)
      cos x = cos2 40° + sin2 40°
      cos x = 1 …[∵ cos2 A + sin2 A = 1
      cos x = cos 0° ⇒ x = 0°

      Question 25.
      If sin θ = 12, then show that 3 cos θ – 4 cos3 θ = 0. (2014)
      Solution:
      sin θ = 12
      sin θ = sin 30° ⇒ θ = 30°
      L.H.S = 3 cos θ – 4 cos3 θ
      = 3 cos 30° – 4 cos3(30°)
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 12

      Question 26.
      If 5 sin θ = 4, prove that 1cosθ+1cotθ = 3 (2013
      Solution:
      Given: 5 sin θ = 4
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 13

      Question 27.
      Evaluate: sec 41°. sin 49° + cos 29°.cosec 61° Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 14 (2012)
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 15

      Question 28.
      Evaluate: (2012, 2017D)
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 16
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 17

      Question 29.
      In figure, ∆PQR right angled at Q, PQ = 6 cm and PR = 12 cm. Determine ∠QPR and ∠PRQ. (2013)
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 18
      Solution:
      In rt. ∆PQR,
      PQ2 + QR2 = PR2 …[By Pythogoras’ theorem
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 19
      (6)2 + QR2 = (12)2
      QR2 = 144 – 36
      QR2 = 108
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 20

      Question 30.
      Find the value of: (2013)
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 21
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 22
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 23

      Question 31.
      Prove that: sin263∘+sin227∘sec220∘−cot270∘ + 2 sin 36° sin 42° sec 48° sec 54° (2017OD)
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 24

      Question 32.
      If sin θ = 1213, 0° <0 < 90°, find the value of: sin2θ−cos2θ2sinθ⋅cosθ×1tan2θ (2015)
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 25
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 26

      Question 33.
      Prove that: (2012)
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 27
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 28

      Question 34.
      Prove that: tanθ+secθ−1tanθ−secθ+1=1+sinθcosθ (2012, 2017D)
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 29

      Question 35.
      If tan θ = ab, prove that asinθ−bcosθasinθ+bcosθ=a2−b2a2+b2 (2013)
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 30
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 31

      Question 36.
      Prove the identity: (sec A – cos A). (cot A + tan A) = tan A . sec A. (2014)
      Solution:
      L.H.S.= (sec A – cos A) (cot A + tan A)
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 32

      Question 37.
      If sec θ + tan θ = p, prove that sin θ = p2−1p2+1 (2015)
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 33

      Question 38.
      Prove that: sinθ−2sin3θ2cos3θ−cosθ = tan θ (2015)
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 34

      Question 39.
      Prove that: sinθ1+cosθ+1+cosθsinθ = 2 cosec θ (2017OD)
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 35

      Introduction to Trigonometry Class 10 Important Questions Long Answer (4 Marks)

      Question 40.
      In an acute angled triangle ABC, if sin (A + B – C) = 12 and cos (B + C – A) = 12√, find ∠A, ∠B and ∠C. (2012)
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 36
      Putting the values of A and B in (iii), we get
      67.5° + B + 75o = 180°
      B = 180° – 67.5° – 75o = 37.5°
      ∴ ∠A = 67.5°, ∠B = 37.5° and ∠C = 75°

      Question 41.
      Evaluate: (2013)
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 37
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 38

      Question 42.
      Evaluate the following: (2015)
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 39
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 40

      Question 43.
      If θ = 30°, verify the following: (2014)
      (i) cos 3θ = 4 cos3 θ – 3 cos θ
      (ii) sin 3θ = 3 sin θ – 4 sin3θ
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 41
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 42

      Question 44.
      If tan (A + B) = 3–√ and tan (A – B) = 13√ where 0 < A + B < 90°, A > B, find A and B. Also calculate: tan A. sin (A + B) + cos A. tan (A – B). (2015)
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 43

      Question 45.
      Find the value of cos 60° geometrically. Hence find cosec 60°. (2012, 2017D)
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 44
      Let ∆ABC be an equilateral ∆.
      Let each side of triangle be 2a.
      Since each angle in an equilateral ∆ is 60°
      ∴ ∠A = ∠B = ∠C = 60°
      Draw AD ⊥ BC
      In ∆ADB and A∆ADC,
      AB = AC … [Each = 2a
      AD = AD …[Common
      ∠1 -∠2 … [Each 90°
      ∴ ∆ADB = ∆ADC …[RHS congruency rule
      BD = DC = 2a2 = a
      In rt. ∆ADB, cos 60° = BDAB=a2a=12
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 45

      Question 46.
      If tan(20° – 3α) = cot(5α – 20°), then find the value of α and hence evaluate: sin α. sec α . tan α – cosec α . cos α . cot α. (2014)
      Solution:
      tan(20° – 3α) = cot(5α – 20°)
      tan(20° – 3α) = tan[90° – (5α – 20°)] …[∵ cot θ = tan(90° – θ)]
      ∴ 20° – 3α = 90° – 5α + 20°
      ⇒ -3α + 5α = 90° + 20° – 20°
      ⇒ 2α = 90° ⇒ α = 45°
      Now, sin α . sec α tan α – cosec α . cos α . cot α
      = sin 45°. sec 45° tan 45° – cosec 45°. cos 45° cot 45°
      = 12√×2–√×1−2–√×12√×1=1−1=0

      Question 47.
      If xacosθ + ybsinθ = 1 and xasinθ – yb cosθ = 1, prove that event x2a2+y2b2 = 2. (2012, 2017D)
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 46
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 47
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 48

      Question 48.
      If sin θ = cc2+d2√ and d > 0, find the values of cos θ and tan θ. (2013)
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 49

      Question 49.
      If cot B = 125, prove that tan2B – sin2B = sin4 B . sec2 B. (2013)
      Solution:
      cot B = 125 :: ABBC=125
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 50
      AB = 12k, BC = 5k
      In rt. ∆ABC, …[By Pythagoras’ theorem
      AC2 = AB2 + BC2
      AC2 = (12k)2 + (5k)2
      AC2 = 144k2 + 25k2
      AC2 = 169k2
      AC = +13k …[∵ Hypotenuse cannot be -ve
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 51

      Question 50.
      If 3–√ cot2θ – 4 cot θ + 3–√ = 0, then find the value of cot2 θ + tan2θ. (2013)
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 52

      Question 51.
      Prove that b2x2 – a2y2 = a2b2, if: (2014)
      (i) x = a sec θ, y = b tan θ
      (ii) x = a cosec θ, y = b cot θ
      Solution:
      (i) L.H.S. = b2x2 – a2y2
      = b2(a sec θ)2 – a2(b tan θ)2
      = b2a2 sec θ – a2b2 tan2θ
      = b2a2(sec2 θ – tan2 θ)
      = b2a2(1) …[∵ sec2θ – tan2 θ = 1
      = a2b2 = R.H.S.

      (ii) L.H.S. = b2x2 – a2y2
      = b2(a cosec θ)2 – a2(b cot θ)2
      = b2a2 cosec2 θ – a2b2 cot2 θ
      = b2a2(cosec2θ – cot2 θ)
      = b2a2 (1) ..[∵ cosec2 θ – cot2 θ = 1
      = a2b2= R.H.S.

      Question 52.
      If sec θ – tan θ = x, show that sec θ + tan θ = 1x and hence find the values of cos θ and sin θ. (2015)
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 53
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 54

      Question 53.
      If cosec θ + cot θ = p, then prove that cos θ = p2−1p2+1. (2012)
      Solution:
      cosec θ + cot θ = p
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 55

      Question 54.
      If tan θ + sin θ = p; tan θ – sin θ = q; prove that p2 – q2 = 4pq−−√. (2012)
      Solution:
      L.H.S. = p2 – q2
      = (tan θ + sin θ)2 – (tan θ – sin θ)2
      = (tan2θ + sin2θ + 2.tanθ.sinθ) – (tan2θ + sin2θ – 2tan θ sin θ)
      = 2 tan θ sin θ+ 2 tan θ sin θ
      = 4 tan θ sin θ …(i)
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 56

      Question 55.
      If sin θ + cos θ = m and sec θ + cosec θ = n, then prove that n(m2 – 1) = 2m. (2013)
      Solution:
      m2 – 1 = (sin θ + cos θ)2 – 1
      = sin2 θ + cos2θ + 2 sin θ cos θ – 1
      = 1 + 2 sin θ cos θ – 1
      = 2 sin θ cos θ …[sin2 θ + cos2 θ = 1
      L.H.S. = n(m2 – 1)
      = (sec θ + cosec θ) 2 sin θ cos θ
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 57

      Question 56.
      Prove that: Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 58 = 2 cosec A (2012)
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 59

      Question 57.
      In ∆ABC, show that sin2 A2 + sin2 B+C2 = 1. (2013)
      Solution:
      In ∆ABC, ∠A + ∠B + ∠C = 180° … [Sum of the angles of ∆
      ∠B + ∠C = 180° – ∠A
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 60

      Question 58.
      Find the value of: (2013)
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 61
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 62

      Question 59.
      Prove that: (sin θ + cos θ + 1). (sin θ – 1 + cos θ) . sec θ . cosec θ = 2 (2014)
      Solution:
      L.H.S. = (sin θ + cos θ + 1) (sin θ – 1 + cos θ) . sec θ cosec θ
      = [(sin θ + cos θ) + 1] [(sin θ + cos θ) – 1] . sec θ cosec θ
      = [(sin θ + cos θ)2 – (1)2] sec θ cosec θ …[∵ (a + b)(a – b) = a2 – b2
      = (sin2 θ + cos2θ + 2 sin θ cos θ – 1]. sec θ cosec θ
      = (1 + 2 sin θ cos θ – 1). sec θ cosecθ …[∵ sin2θ + cos2θ = 1
      = (2 sin θ cos θ). 1cosθ⋅1sinθ
      = 2 = R.H.S. …(Hence proved)

      Question 60.
      Prove that: (2014)
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 63
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 64

      Question 61.
      Prove that: (1 + cot A + tan A). (sin A – cos A) = sec3A−csc3Asec2A⋅csc2A (2015)
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 65

      Question 62.
      Prove the identity: (2015)
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 66
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 67

      Question 63.
      Prove the following trigonometric identities: sin A (1 + tan A) + cos A (1 + cot A) = sec A + cosec A. (2015)
      Solution:
      L.H.S.
      = sin A (1 + tan A) + cos A (1 + cot A)
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 68

      Question 64.
      Prove that: (cot A + sec B)2 – (tan B – cosec A)2 = 2(cot A . sec B + tan B. cosec A) (2014)
      Solution:
      L.H.S.
      = (cot A + sec B)2 – (tan B – cosec A)2
      = cot2 A + sec2 B + 2 cot A sec B – (tan2 B + cosec2 A – 2 tan B cosec A)
      = cot2 A + sec2 B + 2 cot A sec B – tan2 B – cosec2 A + 2 tan B cosec A
      = (sec2 B – tan2 B) – (cosec2 A – cot2 A) + 2(cot A sec B + tan B cosec A)
      = 1 – 1 + 2(cot A sec B + tan B cosec A) … [∵ sec2B – tan2 B = 1
      cosec2A – cot2 A = 1
      = 2(cot A . sec B + tan B . cosec A) = R.H.S.

      Question 65.
      If x = r sin A cos C, y = r sin A sin C and z = r cos A, then prove that x2 + y2 + z2 = r2. (2017OD)
      Solution:
      x = r sin A cos C; y = r sin A sin C; z = r cos A
      Squaring and adding,
      L.H.S. x2 + y2 + z2 = 2 sin2 A cos2C + r2 sin2 A sin2 C + r2 cos2 A
      = r2 sin2 A(cos2 C + sin2 C) + r2 cos2 A
      = r2 sin2 A + r2 cos2 A … [cos2θ + sin2θ = 1
      = r2 (sin2 A + cos2 A) = r2 = R.H.S.

      Question 66.
      Prove that: (2017OD)
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 69
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 70

      Question 67.
      In the adjoining figure, ABCD is a rectanlge with breadth BC = 7 cm and ∠CAB = 30°. Find the length of side AB of the rectangle and length of diagonal AC. If the ∠CAB = 60°, then what is the size of the side AB of the rectangle. [Use 3–√ = 1.73 and 2–√ = 1.41, if required) (2014OD)
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 71
      Solution:
      Important Questions for Class 10 Maths Chapter 8 Introduction to Trigonometry 72

      Search

      NCERT SOLUTIONS

      • NCERT Solutions For Class 1
      • NCERT Solutions For Class 2
      • NCERT Solutions For Class 3
      • NCERT Solutions For Class 4
      • NCERT Solutions For Class 5
      • NCERT Solutions For Class 6
      • NCERT Solutions For Class 7
      • NCERT Solutions For Class 8
      • NCERT Solutions For Class 9
      • NCERT Solutions For Class 10
      • NCERT Solutions For Class 11
      • NCERT Solutions For Class 12

      GSEB SOLUTOINS

      • GSEB Solutions For Class 4
      • GSEB Solutions For Class 5
      • GSEB Solutions For Class 6
      • GSEB Solutions For Class 7
      • GSEB Solutions For Class 8
      • GSEB Solutions For Class 9
      • GSEB Solutions For Class 10
      • GSEB Solutions For Class 11
      • GSEB Solutions For Class 12

      SITE NAVIGATION

      • Best Online Live Coaching Classes
      • Blog
      • About Us
      • Contact
      • Book A Free Class
      • Pay Now !

      GSEB SOLUTIONS

      • GSEB Solutions For Class 4
      • GSEB Solutions For Class 5
      • GSEB Solutions For Class 6
      • GSEB Solutions For Class 7
      • GSEB Solutions For Class 8
      • GSEB Solutions For Class 9
      • GSEB Solutions For Class 10
      • GSEB Solutions For Class 11
      • GSEB Solutions For Class 12

      NCERT SOLUTIONS

      • NCERT Solutions For Class 1
      • NCERT Solutions For Class 2
      • NCERT Solutions For Class 3
      • NCERT Solutions For Class 4
      • NCERT Solutions For Class 5
      • NCERT Solutions For Class 6
      • NCERT Solutions For Class 7
      • NCERT Solutions For Class 8
      • NCERT Solutions For Class 9
      • NCERT Solutions For Class 10
      • NCERT Solutions For Class 11
      • NCERT Solutions For Class 12

      (+91) 99984 33334

      bhavyeducation@gmail.com

      Our Social Profiles

      © 2022 Bhavy Education.