NCERT Solutions for Class 8 Maths Chapter 14 Factorisation
NCERT Solutions for Class 8 Maths Chapter 14 Factorisation Exercise 14.1
Ex 14.1 Class 8 Maths Question 1.
Find the common factors of the given terms.
(i) 12x, 36
(ii) 2y, 22xy
(iii) 14pq, 28p2q2
(iv) 2x, 3x2, 4
(v) 6abc, 24ab2, 12a2b
(vi) 16x3, -4x2, 32x
(vii) 10pq, 20qr, 30rp
(viii) 3x2y3, 10x3y2, 6x2y2z
Solution:
(i) 12x, 36
(2 × 2 × 3 × x) and (2 × 2 × 3 × 3)
Common factors are 2 × 2 × 3 = 12
Hence, the common factor = 12
(ii) 2y, 22xy
= (2 × y) and (2 × 11 × x × y)
Common factors are 2 × y = 2y
Hence, the common factor = 2y
(iii) 14pq, 28p2q2
= (2 × 7 × p × q) and (2 × 2 × 7 × p × p × q × q)
Common factors are 2 × 7 × p × q = 14pq
Hence, the common factor = 14pq
(iv) 2x, 3x2, 4
= (2 × x), (3 × x × x) and (2 × 2)
Common factor is 1
Hence, the common factor = 1 [∵ 1 is a factor of every number]
(v) 6abc, 24ab2, 12a2b
= (2 × 3 × a × b × c), (2 × 2 × 2 × 3 × a × b × b) and (2 × 2 × 3 × a × a × b)
Common factors are 2 × 3 × a × b = 6ab
Hence, the common factor = 6ab
(vi) 16x3, -4x2, 32x
= (2 × 2 × 2 × 2 × x × x × x), -(2 × 2 × x × x), (2 × 2 × 2 × 2 × 2 × x)
Common factors are 2 × 2 × x = 4x
Hence, the common factor = 4x
(vii) 10pq, 20qr, 30rp
= (2 × 5 × p × q), (2 × 2 × 5 × q × r), (2 × 3 × 5 × r × p)
Common factors are 2 × 5 = 10
Hence, the common factor = 10
(viii) 3x2y2, 10x3y2, 6x2y2z
= (3 × x × x × y × y), (2 × 5 × x × x × x × y × y), (2 × 3 × x × x × y × y × z)
Common factors are x × x × y × y = x2y2
Hence, the common factor = x2y2.
Ex 14.1 Class 8 Maths Question 2.
Factorise the following expressions.
(i) 7x – 42
(ii) 6p – 12q
(iii) 7a2 + 14a
(iv) -16z + 20z3
(v) 20l2m + 30alm
(vi) 5x2y – 15xy2
(vii) 10a2 – 15b2 + 20c2
(viii) -4a2 + 4ab – 4ca
(ix) x2yz + xy2z + xyz2
(x) ax2y + bxy2 + cxyz
Solution:
(i) 7x – 42 = 7(x – 6)
(ii) 6p – 12q = 6(p – 2q)
(iii) 7a2 + 14a = 7a(a + 2)
(iv) -16z + 20z3 = 4z(-4 + 5z2)
(v) 20l2m + 30alm = 10lm(2l + 3a)
(vi) 5x2y – 15xy2 = 5xy(x – 3y)
(vii) 10a2 – 15b2 + 20c2 = 5(2a2 – 3b2 + 4c2)
(viii) -4a2 + 4ab – 4ca = 4a(-a + b – c)
(ix) x2yz + xy2z + xyz2 = xyz(x + y + z)
(x) ax2y + bxy2 + cxyz = xy(ax + by + cz)
Ex 14.1 Class 8 Maths Question 3.
Factorise:
(i) x2 + xy + 8x + 8y
(ii) 15xy – 6x + 5y – 2
(iii) ax + bx – ay – by
(iv) 15pq + 15 + 9q + 25p
(v) z – 7 + 7xy – xyz
Solution:
(i) x2 + xy + 8x + 8y
Grouping the terms, we have
x2 + xy + 8x + 8y
= x(x + y) + 8(x + y)
= (x + y)(x + 8)
Hence, the required factors = (x + y)(x + 8)
(ii) 15xy – 6x + 5y – 2
Grouping the terms, we have
(15xy – 6x) + (5y – 2)
= 3x(5y – 2) + (5y – 2)
= (5y – 2)(3x + 1)
(iii) ax + bx – ay – by
Grouping the terms, we have
= (ax – ay) + (bx – by)
= a(x – y) + b(x – y)
= (x – y)(a + b)
Hence, the required factors = (x – y)(a + b)
(iv) 15pq + 15 + 9q + 25p
Grouping the terms, we have
= (15pq + 25p) + (9q + 15)
= 5p(3q + 5) + 3(3q + 5)
= (3q + 5) (5p + 3)
Hence, the required factors = (3q + 5) (5p + 3)
(v) z – 7 + 7xy – xyz
Grouping the terms, we have
= (-xyz + 7xy) + (z – 7)
= -xy(z – 7) + 1 (z – 7)
= (-xy + 1) (z – 1)
Hence the required factor = -(1 – xy) (z – 7)
NCERT Solutions for Class 8 Maths Chapter 14 Factorisation Exercise 14.2
Ex 14.2 Class 8 Maths Question 1.
Factorise the following expressions.
(i) a2 + 8a +16
(ii) p2 – 10p + 25
(iii) 25m2 + 30m + 9
(iv) 49y2 + 84yz + 36z2
(v) 4x2 – 8x + 4
(vi) 121b2 – 88bc + 16c2
(vii) (l + m)2 – 4lm. (Hint: Expand (l + m)2 first)
(viii) a4 + 2a2b2 + b4
Solution:
(i) a2 + 8a + 16
Here, 4 + 4 = 8 and 4 × 4 = 16
a2 + 8a +16
= a2 + 4a + 4a + 4 × 4
= (a2 + 4a) + (4a + 16)
= a(a + 4) + 4(a + 4)
= (a + 4) (a + 4)
= (a + 4)2
(ii) p2 – 10p + 25
Here, 5 + 5 = 10 and 5 × 5 = 25
p2 – 10p + 25
= p2 – 5p – 5p + 5 × 5
= (p2 – 5p) + (-5p + 25)
= p(p – 5) – 5(p – 5)
= (p – 5) (p – 5)
= (p – 5)2
(iii) 25m2 + 30m + 9
Here, 15 + 15 = 30 and 15 × 15 = 25 × 9 = 225
25m2 + 30m + 9
= 25m2 + 15m + 15m + 9
= (25m2 + 15m) + (15m + 9)
= 5m(5m + 3) + 3(5m + 3)
= (5m + 3) (5m + 3)
= (5m + 3)2
(iv) 49y2 + 84yz + 36z2
Here, 42 + 42 = 84 and 42 × 42 = 49 × 36 = 1764
49y2 + 84yz + 36z2
= 49y2 + 42yz + 42yz + 36z2
= 7y(7y + 6z) +6z(7y + 6z)
= (7y + 6z) (7y + 6z)
= (7y + 6z)2
(v) 4x2 – 8x + 4
= 4(x2 – 2x + 1) [Taking 4 common]
= 4(x2 – x – x + 1)
= 4[x(x – 1) -1(x – 1)]
= 4(x – 1)(x – 1)
= 4(x – 1)2
(vi) 121b2 – 88bc + 16c2
Here, 44 + 44 = 88 and 44 × 44 = 121 × 16 = 1936
121b2 – 88bc + 16c2
= 121b2 – 44bc – 44bc + 16c2
= 11b(11b – 4c) – 4c(11b – 4c)
= (11b – 4c) (11b – 4c)
= (11b – 4c)2
(vii) (l + m)2 – 4lm
Expanding (l + m)2, we get
l2 + 2lm + m2 – 4lm
= l2 – 2lm + m2
= l2 – Im – lm + m2
= l(l – m) – m(l – m)
= (l – m) (l – m)
= (l – m)2
(viii) a4 + 2a2b2 + b4
= a4 + a2b2 + a2b2 + b4
= a2(a2 + b2) + b2(a2 + b2)
= (a2 + b2)(a2 + b2)
= (a2 + b2)2
Ex 14.2 Class 8 Maths Question 2.
Factorise.
(i) 4p2 – 9q2
(ii) 63a2 – 112b2
(iii) 49x2 – 36
(iv) 16x5 – 144x3
(v) (l + m)2 – (l – m)2
(vi) 9x2y2 – 16
(vii) (x2 – 2xy + y2) – z2
(viii) 25a2 – 4b2 + 28bc – 49c2
Solution:
(i) 4p2 – 9q2
= (2p)2 – (3q)2
= (2p – 3q) (2p + 3q)
[∵ a2 – b2 = (a + b)(a – b)]
(ii) 63a2 – 112b2
= 7(9a2 – 16b2)
= 7 [(3a)2 – (4b)2]
= 7(3a – 4b)(3a + 4b)
[∵ a2 – b2 = (a + b)(a – b)]
(iii) 49x2 – 36 = (7x)2 – (6)2
= (7x – 6) (7x + 6)
[∵ a2 – b2 = (a + b)(a – b)]
(iv) 16x5 – 144x3 = 16x3 (x2 – 9)
= 16x3 [(x)2 – (3)2]
= 16x3(x – 3)(x + 3)
[∵ a2 – b2 = (a + b)(a – b)]
(v) (l + m)2 – (l – m)2
= (l + m) – (l – m)] [(l + m) + (l – m)]
[∵ a2 – b2 = (a + b)(a – b)]
= (l + m – l + m)(l + m + l – m)
= (2m) (2l)
= 4ml
(vi) 9x2y2 – 16 = (3xy)2 – (4)2
= (3xy – 4)(3xy + 4)
[∵ a2 – b2 = (a + b)(a – b)]
(vii) (x2 – 2xy + y2) – z2
= (x – y)2 – z2
= (x – y – z) (x – y + z)
[∵ a2 – b2 = (a + b)(a – b)]
(viii) 25a2 – 4b2 + 28bc – 49c2
= 25a2 – (4b2 – 28bc + 49c2)
= (5a)2 – (2b – 7c)2
= [5a – (2b – 7c)] [5a + (2b – 7c)]
= (5a – 2b + 7c)(5a + 2b – 7c)
Ex 14.2 Class 8 Maths Question 3.
Factorise the expressions.
(i) ax2 + bx
(ii) 7p2 + 21q2
(iii) 2x3 + 2xy2 + 2xz2
(iv) am2 + bm2 + bn2 + an2
(v) (lm + l) + m + 1
(vi) y(y + z) + 9(y + z)
(vii) 5y2 – 20y – 8z + 2yz
(viii) 10ab + 4a + 5b + 2
(ix) 6xy – 4y + 6 – 9x
Solution:
(i) ax2 + bx = x(ax + 5)
(ii) 7p2 + 21q2 = 7(p2 + 3q2)
(iii) 2x3 + 2xy2 + 2xz2 = 2x(x2 + y2 + z2)
(iv) am2 + bm2 + bn2 + an2
= m2 (a + b) + n2(a + b)
= (a + b)(m2 + n2)
(v) (lm + l) + m + 1
= l(m + 1) + (m + 1)
= (m + 1) (l + 1)
(vi) y(y + z) + 9(y + z) = (y + z)(y + 9)
(vii) 5y2 – 20y – 8z + 2yz
= 5y2 – 20y + 2yz – 8z
= 5y(y – 4) + 2z(y – 4)
= (y – 4) (5y + 2z)
(viii) 10ab + 4a + 5b + 2
= 2a(5b + 2) + 1(5b + 2)
= (5b + 2)(2a + 1)
(ix) 6xy – 4y + 6 – 9x
= 6xy – 4y – 9x + 6
= 2y(3x – 2) – 3(3x – 2)
= (3x – 2) (2y – 3)
Ex 14.2 Class 8 Maths Question 4.
Factorise.
(i) a4 – b4
(ii) p4 – 81
(iii) x4 – (y + z)4
(iv) x4 – (x – z)4
(v) a4 – 2a2b2 + b4
Solution:
(i) a4 – b4 – (a2)2 – (b2)2
[∵ a2 – b2 = (a – b)(a + b)]
= (a2 – b2) (a2 + b2)
= (a – b) (a + b) (a2 + b2)
(ii) p4 – 81 = (p2)2 – (9)2
= (p2 – 9) (p2 + 9)
[∵ a2 – b2 = (a – b)(a + b)]
= (p – 3)(p + 3) (p2 + 9)
(iii) x4 – (y + z)4 = (x2)2 – [(y + z)2]2
[∵ a2 – b2 = (a – b)(a + b)]
= [x2 – (y + z)2] [x2 + (y + z)2]
= [x – (y + z)] [x + (y + z)] [x2 + (y + z)2]
= (x – y – z) (x + y + z) [x2 + (y + z)2]
(iv) x4 – (x – z)4 = (x2)2 – [(y – z)2]2
= [x2 – (y – z)2] [x2 + (y – z)2]
= (x – y + z) (x + y – z) (x2 + (y – z)2]
(v) a4 – 2a2b2 + b4
= a4 – a2b2 – a2b2 + b4
= a2(a2 – b2) – b2(a2 – b2)
= (a2 – b2)(a2 – b2)
= (a2 – b2)2
= [(a – b) (a + b)]2
= (a – b)2 (a + b)2
Ex 14.2 Class 8 Maths Question 5.
Factorise the following expressions.
(i) p2 + 6p + 8
(ii) q2 – 10q + 21
(iii) p2 + 6p – 16
Solution:
(i) p2 + 6p + 8
Here, 2 + 4 = 6 and 2 × 4 = 8
p2 + 6p + 8
= p2 + 2p + 4p + 8
= p (p + 2) + 4(p + 2)
= (p + 2) (p + 4)
(ii) q2 – 10q + 21
Here, 3 + 7 = 10 and 3 × 7 = 21
q2 – 10q + 21
= q2 – 3q – 7q + 21
= q(q – 3) – 7(q – 3)
= (q – 3) (q – 7)
(iii) p2 + 6p – 16
Here, 8 – 2 = 6 and 8 × 2 = 16
p2 + 6p – 16
= p2 + 8p – 2p – 16
= p(p + 8) – 2(p + 8)
= (p + 8) (p – 2)
NCERT Solutions for Class 8 Maths Chapter 14 Factorisation Exercise 14.3
Ex 14.3 Class 8 Maths Question 1.
Carry out the following divisions.
(i) 28x4 ÷ 56x
(ii) -36y3 ÷ 9y2
(iii) 66pq2r3 ÷ 11qr2
(iv) 34x3y3z3 ÷ 51xy2z3
(v) 12a8b8 ÷ (-6a6b4)
Solution:
Ex 14.3 Class 8 Maths Question 2.
Divide the following polynomial by the given monomial.
(i) (5x2 – 6x) ÷ 3x
(ii) (3y8 – 4y6 + 5y4) ÷ y4
(iii) 8(x3y2z2 + x2y3z2 + x2y2z3) ÷ 4x2y2z2
(iv) (x3 + 2x2 + 3x) ÷ 2x
(v) (p3q6 – p6q3) ÷ p3q3
Solution:
Ex 14.3 Class 8 Maths Question 3.
Work out the following divisions.
(i) (10x – 25) ÷ 5
(ii) (10x – 25) ÷ (2x – 5)
(iii) 10y(6y + 21) ÷ 5(2y + 7)
(iv) 9x2y2(3z – 24) ÷ 27xy(z – 8)
(v) 96abc(3a – 12) (5b – 30) ÷ 144(a – 4)(b – 6)
Solution:
Ex 14.3 Class 8 Maths Question 4.
Divide as directed.
(i) 5(2x + 1) (3x + 5) ÷ (2x + 1)
(ii) 26xy (x + 5)(y – 4) ÷ 13x(y – 4)
(iii) 52pqr(p + q) (q + r) (r + p) ÷ 104pq(q + r)(r + p)
(iv) 20(y + 4)(y2 + 5y + 3) ÷ 5(y + 4)
(v) x(x + 1) (x + 2) (x + 3) ÷ x(x + 1)
Solution:
Ex 14.3 Class 8 Maths Question 5.
Factorise the expressions and divide them as directed.
(i) (y2 + 7y + 10) ÷ (y + 5)
(ii) (m2 – 14m – 32) ÷ (m + 2)
(iii) (5p2 – 25p + 20) ÷ (p – 1)
(iv) 4yz(z2 + 6z – 16) ÷ 2y(z + 8)
(v) 5pq(p2 – q2) ÷ 2p(p + q)
(vi) 12xy(9x2 – 16y2) ÷ 4xy(3x + 4y)
(vii) 39y3(50y2 – 98) ÷ 26y2(5y + 7)
Solution:
Factorisation Class 8 Extra Questions Maths Chapter 14
Extra Questions for Class 8 Maths Chapter 14 Factorisation
Factorisation Class 8 Extra Questions Very Short Answer Type
Question 1.
Find the common factors of the following terms.
(a) 25x2y, 30xy2
(b) 63m3n, 54mn4
Solution:
(a) 25x2y, 30xy2
25x2y = 5 × 5 × x × x × y
30xy2 = 2 × 3 × 5 × x × y × y
Common factors are 5× x × y = 5 xy
(b) 63m3n, 54mn4
63m3n = 3 × 3 × 7 × m × m × m × n
54mn4 = 2 × 3 × 3 × 3 × m × n × n × n × n
Common factors are 3 × 3 × m × n = 9mn
Question 2.
Factorise the following expressions.
(a) 54m3n + 81m4n2
(b) 15x2y3z + 25x3y2z + 35x2y2z2
Solution:
(a) 54m3n + 81m4n2
= 2 × 3 × 3 × 3 × m × m × m × n + 3 × 3 × 3 × 3 × m × m × m × m × n × n
= 3 × 3 × 3 × m × m × m × n × (2 + 3 mn)
= 27m3n (2 + 3mn)
(b) 15x2y3z + 25 x3y2z + 35x2y2z2 = 5x2y2z ( 3y + 5x + 7)
Question 3.
Factorise the following polynomials.
(a) 6p(p – 3) + 1 (p – 3)
(b) 14(3y – 5z)3 + 7(3y – 5z)2
Solution:
(a) 6p(p – 3) + 1 (p – 3) = (p – 3) (6p + 1)
(b) 14(3y – 5z)3 + 7(3y – 5z)2
= 7(3y – 5z)2 [2(3y – 5z) +1]
= 7(3y – 5z)2 (6y – 10z + 1)
Question 4.
Factorise the following:
(a) p2q – pr2 – pq + r2
(b) x2 + yz + xy + xz
Solution:
(a) p2q – pr2 – pq + r2
= (p2q – pq) + (-pr2 + r2)
= pq(p – 1) – r2(p – 1)
= (p – 1) (pq – r2)
(b) x2 + yz + xy + xz
= x2 + xy +xz + yz
= x(x + y) + z(x + y)
= (x + y) (x + z)
Question 5.
Factorise the following polynomials.
(a) xy(z2 + 1) + z(x2 + y2)
(b) 2axy2 + 10x + 3ay2 + 15
Solution:
(a) xy(z2 + 1) + z(x2 + y2)
= xyz2 + xy + 2x2 + zy2
= (xyz2 + zx2) + (xy + zy2)
= zx(yz + x) + y(x + yz)
= zx(x + yz) + y(x + yz)
= (x + yz) (zx + y)
(b) 2axy2 + 10x + 3ay2 + 15
= (2axy2 + 3ay2) + (10x + 15)
= ay2(2x + 3) +5(2x + 3)
= (2x + 3) (ay2 + 5)
Question 6.
Factorise the following expressions.
(а) x2 + 4x + 8y + 4xy + 4y2
(b) 4p2 + 2q2 + p2q2 + 8
Solution:
(a) x2 + 4x + 8y + 4xy + 4y2
= (x2 + 4xy + 4y2) + (4x + 8y)
= (x + 2y)2 + 4(x + 2y)
= (x + 2y)(x + 2y + 4)
(b) 4p2 + 2q2 + p2q2 + 8
= (4p2 + 8) + (p2q2 + 2q2)
= 4(p2 + 2) + q2(p2 + 2)
= (p2 + 2)(4 + q2)
Question 7.
Factorise:
(a) a2 + 14a + 48
(b) m2 – 10m – 56
Solution:
(a) a2 + 14a + 48
= a2 + 6a + 8a + 48
[6 + 8 = 14 ; 6 × 8 = 48]
= a(a + 6) + 8(a + 6)
= (a + 6) (a + 8)
(b) m2 – 10m – 56
= m2 – 14m + 4m – 56
[14 – 4 = 10; 4 × 4 = 56]
= m(m – 14) + 6(m – 14)
= (m – 14) (m + 6)
Question 8.
Factorise:
(a) x4 – (x – y)4
(b) 4x2 + 9 – 12x – a2 – b2 + 2ab
Solution:
(a) x4 – (x – y)4
= (x2)2 – [(x – y)2]2
= [x2 – (x – y)2] [x2 + (x – y)2]
= [x + (x – y] [x – (x – y)] [x2 + x2 – 2xy + y2]
= (x + x – y) (x – x + y)[2x2 – 2xy + y2]
= (2x – y) y(2x2 – 2xy + y2)
= y(2x – y) (2x2 – 2xy + y2)
(b) 4x2 + 9 – 12x – a2 – b2 + 2ab
= (4x2 – 12x + 9) – (a2 + b2 – 2ab)
= (2x – 3)2 – (a – b)2
= [(2x – 3) + (a – b)] [(2x – 3) – (a – b)]
= (2x – 3 + a – b)(2x – 3 – a + b)
Factorisation Class 8 Extra Questions Short Answer Type
Question 9.
Factorise the following polynomials.
(a) 16x4 – 81
(b) (a – b)2 + 4ab
Solution:
(a) 16x4 – 81
= (4x2)2 – (9)2
= (4x2 + 9)(4x2 – 9)
= (4x2 + 9)[(2x)2 – (3)2]
= (4x2 + 9)(2x + 3) (2x – 3)
(b) (a – b)2 + 4ab
= a2 – 2ab + b2 + 4ab
= a2 + 2ab + b2
= (a + b)2
Question 10.
Factorise:
(а) 14m5n4p2 – 42m7n3p7 – 70m6n4p3
(b) 2a2(b2 – c2) + b2(2c2 – 2a2) + 2c2(a2 – b2)
Solution:
(a) 14m5n4p2 – 42m7n3p7 – 70m6n4p3
= 14m5n3p2(n – 3m2p5 – 5mnp)
(b) 2a2(b2 – c2) + b2(2c2 – 2a2) + 2c2(a2 – b2)
= 2a2(b2 – c2) + 2b2(c2 – a2) + 2c2(a2 – b2)
= 2[a2(b2 – c2) + b2(c2 – a2) + c2(a2 – b2)]
= 2 × 0
= 0
Question 11.
Factorise:
(a) (x + y)2 – 4xy – 9z2
(b) 25x2 – 4y2 + 28yz – 49z2
Solution:
(a) (x + y)2 – 4xy – 9z2
= x2 + 2xy + y2 – 4xy – 9z2
= (x2 – 2xy + y2) – 9z2
= (x – y)2 – (3z)2
= (x – y + 3z) (x – y – 3z)
(b) 25x2 – 4y2 + 28yz – 49z2
= 25x2 – (4y2 – 28yz + 49z2)
= (5x)2 – (2y – 7)2
= (5x + 2y – 7) [5x – (2y – 7)]
= (5x + 2y – 7) (5x – 2y + 7)
Question 12.
Evaluate the following divisions:
(a) (3b – 6a) ÷ (30a – 15b)
(b) (4x2 – 100) ÷ 6(x + 5)
Solution:
Question 13.
Simplify the following expressions:
Solution:
Question 14.
Factorise the given expressions and divide that as indicated.
(a) 39n3(50n2 – 98 ) ÷ 26n2(5n – 7)
(b) 44(p4 – 5p3 – 24p2) ÷ 11p(p – 8)
Solution:
Question 15.
If one of the factors of (5x2 + 70x – 160) is (x – 2). Find the other factor.
Solution:
Let the other factor be m.
(x – 2) × m = 5x2 + 70x – 160